Package ring

import "container/ring"
Overview
Index
Examples
Documentation

Overview

Package ring implements operations on circular lists.

Index

type Ring
func New(n int) *Ring
func (r *Ring) Do(f func(interface{}))
func (r *Ring) Len() int
func (r *Ring) Link(s *Ring) *Ring
func (r *Ring) Move(n int) *Ring
func (r *Ring) Next() *Ring
func (r *Ring) Prev() *Ring
func (r *Ring) Unlink(n int) *Ring

Examples

Ring.Do
Ring.Len
Ring.Link
Ring.Move
Ring.Next
Ring.Prev
Ring.Unlink

Documentation

type Ring

type Ring struct {
    Value interface{} // for use by client; untouched by this library
    // contains filtered or unexported fields
}

A Ring is an element of a circular list, or ring. Rings do not have a beginning or end; a pointer to any ring element serves as reference to the entire ring. Empty rings are represented as nil Ring pointers. The zero value for a Ring is a one-element ring with a nil Value.

func New

func New(n int) *Ring

New creates a ring of n elements.

func Ring.Do

func (r *Ring) Do(f func(interface{}))

Do calls function f on each element of the ring, in forward order. The behavior of Do is undefined if f changes *r.

Code:

// Create a new ring of size 5
r := ring.New(5)

// Get the length of the ring
n := r.Len()

// Initialize the ring with some integer values
for i := 0; i < n; i++ {
    r.Value = i
    r = r.Next()
}

// Iterate through the ring and print its contents
r.Do(func(p interface{}) {
    fmt.Println(p.(int))
})

Output:

0
1
2
3
4

func Ring.Len

func (r *Ring) Len() int

Len computes the number of elements in ring r. It executes in time proportional to the number of elements.

Code:

// Create a new ring of size 4
r := ring.New(4)

// Print out its length
fmt.Println(r.Len())

Output:

4
func (r *Ring) Link(s *Ring) *Ring

Link connects ring r with ring s such that r.Next() becomes s and returns the original value for r.Next(). r must not be empty.

If r and s point to the same ring, linking them removes the elements between r and s from the ring. The removed elements form a subring and the result is a reference to that subring (if no elements were removed, the result is still the original value for r.Next(), and not nil).

If r and s point to different rings, linking them creates a single ring with the elements of s inserted after r. The result points to the element following the last element of s after insertion.

func Ring.Move

func (r *Ring) Move(n int) *Ring

Move moves n % r.Len() elements backward (n < 0) or forward (n >= 0) in the ring and returns that ring element. r must not be empty.

Code:

// Create a new ring of size 5
r := ring.New(5)

// Get the length of the ring
n := r.Len()

// Initialize the ring with some integer values
for i := 0; i < n; i++ {
    r.Value = i
    r = r.Next()
}

// Move the pointer forward by three steps
r = r.Move(3)

// Iterate through the ring and print its contents
r.Do(func(p interface{}) {
    fmt.Println(p.(int))
})

Output:

3
4
0
1
2

func Ring.Next

func (r *Ring) Next() *Ring

Next returns the next ring element. r must not be empty.

Code:

// Create a new ring of size 5
r := ring.New(5)

// Get the length of the ring
n := r.Len()

// Initialize the ring with some integer values
for i := 0; i < n; i++ {
    r.Value = i
    r = r.Next()
}

// Iterate through the ring and print its contents
for j := 0; j < n; j++ {
    fmt.Println(r.Value)
    r = r.Next()
}

Output:

0
1
2
3
4

func Ring.Prev

func (r *Ring) Prev() *Ring

Prev returns the previous ring element. r must not be empty.

Code:

// Create a new ring of size 5
r := ring.New(5)

// Get the length of the ring
n := r.Len()

// Initialize the ring with some integer values
for i := 0; i < n; i++ {
    r.Value = i
    r = r.Next()
}

// Iterate through the ring backwards and print its contents
for j := 0; j < n; j++ {
    r = r.Prev()
    fmt.Println(r.Value)
}

Output:

4
3
2
1
0
func (r *Ring) Unlink(n int) *Ring

Unlink removes n % r.Len() elements from the ring r, starting at r.Next(). If n % r.Len() == 0, r remains unchanged. The result is the removed subring. r must not be empty.