Conception

Presented by Dmitri Shuralyov

My personal development history

Game development Tools

2000 2013

BASIC C++ Go

2000 2013

The goals

Make software development more awesome!

Faster

o Why require 3 steps when 1 will do?
Why require any action at all when 0 steps will do?

Easier
o For beginners and pros

Make software more soft (malleable)

Alarming Development

Dispatches from the Programmer Liberation Front

Turing on programming

By JONATHAN EDWARDS | Published: JUNE 23, 2012

The process of constructing instruction tables should be very
fascinating. There need be no real danger of it ever becoming a
drudge, for any processes that are quite mechanical may

be turned over to the machine itself.

- Turing, A. M., 1946, Proposed electronic calculator, report for
National Physical Laboratory, Teddington

So was Turing wrong, or are we just doing it wrong?

Share this: Twitter 28 3+1 Google+1 [Emall

This entry was posted in General. Bookmark the permalink. Both comments and trackbacks
are currently closed.

« The voice whispering bulllshhhiiittt Down the rabbit hole of types »

alarmingdevelopment.org/?p=711

Links

About me
Coherence
Send me email
Subtext

Tweets

RT @the2scoops: OK everyone, so the
plan is when Commander Hadfield lands,
we'll all be wearing ape masks.

5 days ago

Getting to simple
alarmingdevelopment.org/?p=766

5.days ago

Pronunciation of -> in (x)->x*x: 52
responses. 14 goes to, 9 such that, 4 maps
to. Only 1 returns, which is common
desugaring. 1 week ago

@NicholeBernier Know of private high
school with good creative writing
program? 1 week ago

How do you pronounce "->"? As in
"square = (x) -> x*x" 1 week ago

What is Conception?

Conception Demo

github.com/shurcool./Conception#demonstration

<0

https://github.com/shurcooL/Conception#demonstration
https://github.com/shurcooL/Conception#demonstration
https://github.com/shurcooL/Conception#demonstration

Design vs. Implementation

e Design
o The main thing that matters
o It specifies the look, feel, behaviour of your app

e Implementation

o It makes your design run on the computer
o It shouldn't be important nor hard

What Conception really is

e An evolving set of guiding principles that |

believe will get us closer to the goal
o One key guiding principle

e Implementing Conception is about finding
out whether certain ideas work or not

What's great about software?

e Abllity to create
e Capacity and ease of change

e Any downside is an opportunity to improve

CREATEBY

ABSTRACTING

Learning programming is learning abstraction.

A computer program that is just a list of fixed instructions -- draw a rectangle here, then a
triangle there -- is easy enough to write. Easy to follow, easy to understand.

rect(80, 80, 40, 25);
triangle(80, 80, 100, 60, 120, 80);

It also makes no sense at all. It would be much easier to simply draw that house by hand.
What is the point of learning to "code", if it's just a way of getting the computer to do things
that are easier to do directly?

Because code can be generalized beyond that specific case. We can change the program so it
draws the house anywhere we ask. We can change the program to draw many houses, and
change it again so that houses can have different heights. Critically, we can draw all these
different houses from a single description.

function house (x,y) {
rect(x, y, 40, 105 - y);
triangle(x, y, 20 + x, -20 + y, 40 + x, y);

house(34, 68); ‘

house(79, 80);
house(125, 55);

The description still says "draw a rectangle here, then a triangle there", but the here and there

have been abstracted. Different parameters give us different heres and different theres. WOl'ryd ream-Com/Leamab|8Pl’09 ramming/

Blank slate

Progress

i

Capacity for change

After rapid prototyping

Progress

Capacity for change

Enter refactoring!

Progress

Capacity for change

A hurdle to tackle

e |Imagine you have a function that does the
same thing in multiple projects

e You decide to improve it

g_InputManager->RequestTypingPointer(ParentFolderListingWidget->GetWidgets()[0]->ModifyCest

static_cast<MenuWidget<std::string> *>(GetWidgets()[0].get())->SetSelectedEntryId(-1);
static_cast<FolderListingPureWidget *>(GetWidgets()[0].get())->SetSelectedEntryld(-1);

}
break;
case GLFW_KEY RIGHT:

{

github.com

import ()

-func Reverse(s string) string {
+func Reverse(s string) (string) {
r := []rune(s)
for i, j := 0, len(r)-1l; i < 3j; i, j = i+l, j-1 {
r(i], rijl = rijl, rii]

4 'S [«
i -16,4 +16,16 f

gist.github.com

Code duplication is bad

e Toimprove X, you have to improve it in
multiple places

e |f you forget to change all instances of X,
you'll create inconsistency bugs

e \When you see duplicated code, you will not
even want to touch it, so it will remain
unimproved

Don't Repeat Yourself

e Duplication of efforts

o | really dislike having to do the same work more than
once

e Duplication of code

o | really dislike having to manually change the value
of one decision in more than one place

e (Automatic duplication is fine: backups,
cache)

Home » Software development» Holographic code

Holographic code

Posted on 9 January 2012 by John

In a hologram, information about each small area of image is scattered throughout the
holograph. You can't say this little area of the hologram corresponds to this little area of the
image. At least that's what I've heard; | don't really know how holograms work.

| thought about holograms the other day when someone was describing some source code with
deeply nested templates. He told me “You can't just read it. You can only step through the code
with a debugger.” I've ran into similar code. The execution sequence of the code at run time is
almost unrelated to the sequence of lines in the source code. The run time behavior is
scattered through the source code like image information in a holograph.

Holographic code is an advanced anti-pattern. It's more likely to result from good practice taken
to an extreme than from bad practice.

Somewhere along the way, programmers learn the "DRY” principle: Don't Repeat Yourself. This
is good advice, within reason. But if you wring every bit of redundancy out of your code, you
end up with something like Huffman encoded source. In fact, DRY is very much a compression
algorithm. In moderation, it makes code easier to maintain. But carried too far, it makes reading
your code like reading a zip file. Sometimes a little redundancy makes code much easier to
read and maintain.

Code is like wine: a little dryness is good, but too much is bitter or sour.

Note that functional-style code can be holographic just like conventional code. A pure function is
self-contained in the sense that everything the function needs to know comes in as arguments,
i.e. there is no dependence on external state. But that doesn't mean that everything the
programmer needs to Know is in one contiguous chunk of code. If you have to jump all over
your code base to understand what's going on anywhere, you have holographic code,
regardless of what style it was written in. However, | imagine functional programs would usually
be less holographic.

Related post: Baklava code

search here ... Go

John D. Cook

Subscribe RSS

Subscribe by Email

Recent Posts

« Extreme syntax

+ Wooden cash register

« Synchronizing cicadas with
Python

« Searching for Perrin
pseudoprimes
« Looking in both directions

« Pax Romana www.johndcook.com/blog/2012/01/09/holographic-source-code/

Tools

e [ools can enable one to work In a
fundamentally different way

e Create fundamentally new things

Transformative tools

e Text editors (with copy and paste)
e \/ersion control systems (git)

e Compilers

Insight

e Everything of value is made up of other
things of value

e \/alue can be represented as composition of
dependencies

e (There's value in your private helper code,
expose it!)

Pure functions

e They make their dependencies and side-
effects explicit

e Any non-pure function can be rewritten as
pure

Software as Lego

e Software can be made up of pure functions
that are reused across projects

<\

Live
view

Live
view

Stored
truth

Live
view

shurcool / gist:4727543

Last updated a day ago

@

-

4 Edit

Given an import path, it will generate an anonymous usage of the package to avoid "imported and not used" errors.

| Gist Detail
Revisions 20
Stars 1

<> Download Gist

Clone this gist

/shurcool /4727543

Embed this gist

<script src="https:,

Link to this gist

https://gist.github.

[©] gistfilel.go

W W W N -

el el el ol ol el
s W~ O W

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

package main

import (
. "gist.github.com/5504644.git"
"strings"
. "gist.github.com/5210270.git"
"fmt"

// Generates an anonymous usage for the given import statement to avoid "imported and not used" errors

//
// e.g. . "io/ioutil"" -> “var _ = NopCloser"

func GetForcedUseFromImport(Import string) (out string) {

defer func() {
e := recover()
if nil !=e {
out = fmt.Sprint(e)

PO
ImportParts := strings.Split(Import,
if 1 == len(ImportParts) {

")

return GetForcedUse(TrimQuotes(ImportParts(0]))

} else if 2 == len(ImportParts) {

® Delete % Unstar

Go ©

return GetForcedUseRenamed(TrimQuotes(ImportParts[{l]), ImportParts[0])

}
panic("Invalid import string.")

}

// Generates an anonymous usage of the package to avoid "imported and not used"” errors

//

// e.g. “io/ioutil” -> “var _ = ioutil.NopCloser"

func GetForcedUse(ImportPath string) string {
return GetForcedUseRenamed(ImportPath,

")

194

1

® 00 | A Dmitri — bash — 80x24

~ % goe 'gist.github.com/4727543.git' 'GetForcedUse("fmt")'
(string) ("var _ = fmt.Errorf")

~ % 1

59

fmt|+lgo Forced Usefvar = fmt .Errorf

The dream

e \Wikipedia-like home for pure functions;
software uses them

e Improve any function and you're making all
software that relies on it (directly or
iIndirectly) better

e (Make a function worse, and there's no harm
to others)

Thank you!

github.com/shurcool/Conception

Dmitri Shuralyov
twitter.com/shurcool
github.com/shurcoolL
shurcoolL@gmail.com

https://github.com/shurcooL/Conception
https://github.com/shurcooL/Conception
https://twitter.com/shurcooL
https://twitter.com/shurcooL
https://github.com/shurcooL
https://github.com/shurcooL

